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Outline 

•  What are Photometric Redshifts? 
•  A quick background on common training set 

methods 
•  What is Gaussian Process Regression? 
•  Do different kinds of Kernels matter? 
•  Does better quality photometry matter? 
•  How many galaxies do I need to get a good fit? 
•  Do SDSS morphological indicators help? 
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What are Photometric Redshifts? 
Photometric Redshifts: A rough estimate of the redshift of 

a galaxy without having to measure a spectrum.  
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z=0.0 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

    z~0.06 (18000 km/s) 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~0.6 
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What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~0.90 



Stanford 08 

What are Photometric Redshifts? 
Zspec=(λmeasured-λrest)/λrest                   zphoto=z(C,m) 

     z~1.10 
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Photo-z methods 

1.) Spectral Energy Distribution (SED) Fitting: 
• model based approach 
•  uses redshifts derived from spectra of artificial 

galaxies (e.g. Bruzual & Charlot) 

2.) Training-Set methods: 
•  empirical approach 
• uses spectroscopic redshifts from a sub-sample 

of galaxies with the same band-pass filters 



Stanford 08 

Training Set Methods need a sub-sample of Galaxies: 

•  of known spectroscopic redshift  

•  with a comparable range of magnitudes 
   (u g r i z) to our Photometric survey objects 

•  These will be our “Training Samples” 

Photo-z The Empirical Approach 
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“Training Set” Methods 

   Galaxy Photometric Redshift Prediction History 

•  Linear Regression was first tried in the 1960s 
•  Quadratic & Cubic Regression (1970s) 
•  Polynomial Regression (1980s) 
•  Neural Networks (1990s) 
•  Kd Trees & Bayesian Classification Approaches (1990s) 
•  Support Vector Machines & GP Regression (2000s) 



Gaussian Process Regression fitting 

Gaussian Process Regression  Kernel Methods 

Kernel Methods have replaced Neural Networks in the 
Machine Learning literature 
WHY?: given a large # of hidden units => GP (Neal 1996).                                   

hn > 100 
 
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Kernel Methods - Gaussian Process Regression 

GP regression builds a linear model in a very 
high dimensional parameter space    
(“feature space”  Hilbert space).  

•  One can map the data using a function F(x) 
[kernel] into this high (or infinite) 
dimensional parameter space where one can 
perform linear operations. 
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The value of kernels 

F(x) 
Kernel 
Map 

Data in original space:  highly complex 
decision boundaries. 

Data in high dimensional feature 
space after mapping through 
F(x) can yield simple  
decision boundaries. 

Original Data without Kernel Mapped Data using Kernel 
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GP Regression (Kernels) 

GP Advantages: 

•  Small input data training samples  
   (good for higher redshifts?) yet low errors 

•  Over fitting is eliminated by use of proper priors 

•  Realistic estimation of individual redshift errors 
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GP Regression 

GP Disadvantages: 
•  Possibly large CPU time requirements 

– The Kernel (Covariance Matrix) can be large:   
K=(λ2I+XXT)2  if  X=5x180,000 (our case) then                     
K is a matrix 180,000 x 180,000 and we have: 

– Need to invert this large K matrix - O(N3) operation 
•  Kernel Selection is ambiguous? 
€ 

y* = K*(λ2I + K)−1y
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GP: Which Kernel?? 

Using GPs Part I: Pick a transfer/covariance function 

        Matern Class Fcn            Radial Basis Fcn 
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GP Regression How-to 

Using GPs Part II:  That matrix inversion… 

With our SDSS (DR3) Main Galaxy spectroscopic sample 
(180,000 galaxies) the matrix size is 180,000 x 180,000 

•  Need a SSI supercomputer with a LOT of ram and cpu time? 
•  One can take a random sample of ~1000 galaxies & invert that 

while bootstrapping n times from full sample (Paper I) 
•  However, some low-rank matrix approximations work well  

(Cholesky Decomposition, Subset of Regressors, Projected Process 
Approx, etc.) 
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Results: Other authors 
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GP Regression (Results) 

Results: SDSS (DR3) Main Galaxy Sample 

•  Paper I: Compared linear, quadratic, Neural Networks 
and GPs on the SDSS 

•  With ONLY 1000 samples GPs performed well 
compared to the other methods 

•  Paper II: With low-rank matrix inversion 
approximations GPs performed better than all other 
methods 
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Paper I Results: Comparing Methods 
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Latest Results: Comparing Methods 

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Main Galaxy Sample 80000 Linear 
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Main Galaxy Sample 20000 GPR 
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Main Galaxy Sample 80000 GPR  



Stanford 08 

Luminous Red Galaxies 20000 GPR 
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LRG 80000 GPR 
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MGS + 2MASS 20000 
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MGS + 2MASS 80000 



Stanford 08 

LRG+ 2MASS 20000 
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LRG+ 2MASS 80000 
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Results? 

•  Morphology does not generally increase 
accuracy of photo-z estimation with GPR 

•  Better quality photometry and/or removal 
of error outliers does not help 

•  Additional Near IR filters (2MASS) 
increase accuracy 

•  Galaxy classification helps: MGS vs LRG 
•  Optimal filters? u-g-r-i-z and j-h-k 


